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ABSTRACT 

 Researchers often collect longitudinal data so as to model change over time in a 

phenomenon and for a population of interest. Inevitably, there will be some variation 

across individuals in specific time intervals between assessments. By necessity or by 

choice, a researcher can decide to ignore these individual differences in times of 

assessments. In this simulation study of growth curve modeling, I investigate how 

ignoring individual differences in time points when modeling change over time relates to 

convergence and admissibility of solutions, bias in estimates of parameters, power to 

detect change over time, and, when there is no change over time, Type I error rate. The 

simulation factors that I manipulate in this study are magnitude of the individual 

differences in assessment times that are ignored, magnitude of change over time, number 

of time points, and sample size. Results show that, in contrast to the correct analysis, 

ignoring individual differences in time points frequently led to inadmissible solutions, 

especially with few time points and small samples, regardless of the specific magnitude 



www.manaraa.com

 vi 

of individual differences that were ignored. Mean intercept and slope were generally 

estimated without bias. With few time points and small samples, ignoring individual 

differences in time points yielded overestimated intercept and slope variances and 

underestimated intercept-slope covariance and residual variance, more so than when 

using the correct analysis. When there were more than 3 time points, or when there were 

3 time points and sample size was 500, ignoring individual differences in time points 

yielded overestimated residual variance, but only if individual differences were large. 

Power and Type I error rate for the linear slope were unaffected by the type of analysis. 

Overall, this study suggests that it is advisable to account for individual differences in 

time points whenever possible.  
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Chapter 1 

Introduction 

In longitudinal research, a dataset takes one of two forms (Singer & Willett, 

2003). It can be time-structured, meaning that all individuals are assessed at the same 

time points, whether the time points are equally spaced or not. Otherwise, the data are 

time-unstructured, meaning that there are differences in times of assessment across 

individuals. Sometimes, a researcher ignores individual differences in times of 

assessment in time-unstructured datasets by necessity. Perhaps the specific timing of 

assessments was not recorded at the time of data collection, either because such recording 

was not embedded into the research design, or because those in charge of data collection 

failed to record this information. Other times, a researcher ignores individual differences 

in time points merely for simplicity of analysis or exposition. It may or may not be 

possible to measure such individual differences (e.g., by using the dates of data 

collection), but either way, the researcher chooses to simplify a time-unstructured dataset 

into a time-structured dataset. 

The current study seeks to determine the effects of ignoring individual differences 

in times of assessment in the context of growth curve models. Specifically, through 

Monte Carlo simulation, I seek to answer the question: what are the consequences of 

ignoring individual differences in times of assessment when modeling change over time 

in terms of convergence, Type I error rate, power, and accuracy of the parameter 

estimates? In doing so, I aim to fill a gap in the methodological literature, since no study 

has systematically investigated the consequences of treating time-unstructured datasets as 

time-structured in growth curve models before. Further, the findings presented in this 
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paper should help consumers of research critically evaluate how the incorrect analysis of 

a longitudinal dataset may have affected published results. 

The introduction is separated into the following sections. I start by describing two 

frameworks used for growth curve modeling—multilevel modeling and structural 

equation modeling—and I discuss how each relates to time-unstructured data. Then, I 

discuss the issue of the temporal design, or the sampling of time points, in longitudinal 

research. Following that, I mention previous studies that have manipulated the temporal 

design in some fashion in the context of growth curve modeling. In doing so, I also 

expose several other factors that have been found to affect the outcome of a growth curve 

analysis. Finally, I present a few studies that have explicitly addressed the issue of 

ignoring individual differences in times of assessment, and I describe the method used in 

the current study. 

Multilevel Modeling 

One statistical technique often used for modeling change over time is multilevel 

modeling (MLM). In this framework, repeated observations are treated as nested within 

each individual. The basic growth curve is represented using a set of equations at the 

observation level (level 1) and the individual level (level 2) which allow for both random 

slopes and intercepts: 

Level 1:                      (1) 

Level 2:                (2) 

            

These equations can be combined into a reduced-form expression: 

                               (3) 
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In these equations,     is the value of the dependent variable for individual i at assessment 

wave t,     is the mean intercept, and     is the mean linear slope. These two parameters 

do not vary from person to person, and represent fixed effects. Variable     is the time at 

wave t, and the subscript i on variable T indicates that times of measurement are allowed 

to vary across persons. The other terms in the model represent error terms, or deviation 

from mean effects:     is the difference between each person’s intercept and the mean 

intercept;      is the difference between each person’s time slope and the mean time 

slope; and     is the difference between each person’s predicted score at wave t and the 

person’s actual score at that time. The two   error terms reside at level 2 and vary only 

between persons, while the   error term resides at level 1 and varies across time within 

each person. Together, these error terms represent random effects. The error terms are 

assumed to be normally distributed with a mean of 0. Further, level-1 residuals are 

assumed to be independent from level-2 residuals: 

            ;                 [  ] [
      
      

]    (4) 

Change over time is allowed to vary in magnitude for each person, as is the 

predicted score at time 0. Importantly, nothing in this model constrains the time points to 

be the same for everyone. In this way, MLM is well suited for the analysis of time-

unstructured longitudinal data. 

Structural Equation Modeling 

Another statistical technique used in modeling change over time is latent growth 

curve modeling in the structural equation modeling (SEM) framework. Meredith and 

Tisak (1990) have shown that it is possible to model change over time using a special 

case of confirmatory factor analysis. Using the notation employed by Preacher, 
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Wichman, MacCallum, and Briggs (2008), we can provide the following equations (with 

added i subscripts) that define the scores for an individual: 

                 (5) 

where 

                  (6) 

              ;               (7) 

In this model, with t assessments per person and an intercept and slope factor,    is the 

      vector of scores;    is a       vector of intercepts that are typically fixed to 0 

(and is different from the   matrix in Equation 4 above);    is a       matrix of factor 

loadings;    is a       vector of factor scores made of  , a       vector of factor 

means, and   , a       vector of factor-level residuals; and    is a       vector of 

occasion-specific residuals. 

In this case, and contrary to the multilevel model described in the previous 

section, the specific times at which the data are collected (represented in the matrix of 

factor loadings   ) are not allowed to vary from person to person. In this way, this 

specific model cannot handle time-unstructured data. 

Yet, there are reasons why a researcher might opt for conducting his or her 

analysis in this framework rather than through multilevel modeling. One reason is 

missing data: While software implementations of both frameworks handle missing data in 

the dependent variables similarly, SEM software often allows easy handling of missing 

data on predictor variables as well, whereas this is typically not the case in MLM 

software. Another reason is measurement error: SEM allows a researcher to model 

change over time in latent variables using several measures at each time point as 
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indicators, thereby controlling for measurement error, while MLM is restricted to the 

analysis of observed variables. A third reason is that SEM allows a researcher to model 

growth in multiple dependent variables simultaneously much more easily than MLM. 

Analyzing Time-Unstructured Data via SEM 

When the data are time-structured, Curran (2003) showed that the MLM and SEM 

specifications are fully equivalent. However, when the data are time-unstructured, a 

researcher does not necessarily have to turn away from SEM in order to analyze the data 

correctly. In this section, I present three possible solutions to this problem. 

One solution is to use a missing-data approach (Curran, 2003), where a variable 

exists for each observed time point in the dataset. Then, the observed scores are stored in 

the appropriate variables for each individual. This method yields the exact same solution 

as the one that would be obtained were the analysis run in MLM software. However, this 

method is less than adequate. First, it can be difficult and time-consuming to implement: 

The researcher needs to create as many variables as there are different times of 

observations. Second, the method does not always work: If a specific time point is 

observed only once (i.e., at least one variable is left empty for all participants but one), 

then the model cannot be estimated.  

Another, more adequate solution is to use definition variables (Mehta & West, 

2000), which allow the factor loadings from matrix    to vary from person to person. In 

this case, the SEM specification becomes once again equivalent to the MLM 

specification, even in the presence of time-unstructured data. This method does not suffer 

from the shortcomings of the missing-data approach, and it is the method that I use later 

in this paper. 
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Another recent solution is to use multilevel structural equation modeling, which 

combines features of both MLM and SEM. I do not use this technique here, but the 

interested reader is referred to Mehta and Neale (2005), and Kaplan, Kim, and Kim 

(2009). 

The Sampling of Time in Longitudinal Research 

A longitudinal design is intrinsically tied to its temporal design, which refers to 

the way time points are sampled (Collins & Graham, 2002). In other words, the temporal 

design refers to two components: 1) the number of measurements contributed by each 

individual (i.e., the number of time points); and 2) the location of the measurements on 

the time scale (i.e., the absolute location of the time points on the time scale, and their 

relative location to one another; see Collins, 2006). In this way, researchers sample not 

only individuals, but also time points for each individual. This makes sense, given change 

over time (or lack thereof) is continuous instead of discrete, and could be observed at any 

point in time, but in most cases it would be impractical to monitor research participants 

continuously. Therefore, for each longitudinal study, a researcher has to choose a 

temporal design. However, despite calls for more explicit justification of the choice of the 

temporal design and description of how it may have affected the statistical analysis (e.g., 

Collins, 2006; Collins & Graham, 2002), such discussion has yet to become standard 

practice in published reports. 

The first component of the temporal design, the number of time points, can affect 

what a researcher can extract from his or her data. For instance, a researcher’s ability to 

detect either linear or nonlinear change over time depends on the number of time points 

sampled. In particular, barring the cost of additional assessments and the increased risk of 
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attrition, one has much to gain by sampling more frequently (Adolph & Robinson, 2011; 

Cole & Maxwell, 2009; Collins & Graham, 2002; but see Vouloumanos, 2011, for a 

discussion on why nonlinear trajectories might be artifacts). For example, Adolph and 

colleagues (2008) showed using real data that the number of time points affects 

conclusions regarding stage transitions, particularly when the dependent variable is 

dichotomous. Other researchers have developed techniques to make use of frequent time 

points to separate true long-term change over time from short-term noise. For example, 

Shiyko and Ram (2011) show how multilevel modeling can be used to model change 

over time in two different time scales, one shorter (e.g., within-day variation) and one 

longer (e.g. across-day variation; see also Ram & Gerstorf, 2009). Cole and Maxwell 

(2009) present a model that distinguishes between a state (a temporary condition) and a 

trait (a stable condition) using as few as four time points, while McArdle and Woodcock 

(1997) present a similar model using only two assessments per individual. Similarly, 

specific longitudinal designs, such as the measurement burst design (Nesselroade, 1991), 

the intensive longitudinal design (see, e.g., Collins, 2006; Ellis-Davies, Sakkalou, Fowler, 

Hilbrink & Gattis, 2012; Tan, Shiyko, Li, Li & Dierker, 2012), and the accelerated 

longitudinal design (see, e.g., Singer & Willett, 2003), have been developed to maximize 

the number of time points sampled. 

The second component of the temporal design, the location of the time points on 

the time scale, also deserves attention. Just as characteristics of sampled individuals can 

restrict generalizability of results, location of sampled time points can restrict conclusions 

to the very specific time points that are sampled. The absolute location of time points is 

of concern when variables that are of interest change over time, for example when 
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variables follow a daily or seasonal cycle (Selig, Hoy, & Little, in press). In those cases, 

findings might have been different had the study taken place at a different time in the day 

or year. Cole and Maxwell (2009) also remind us that a study’s findings are influenced by 

the timing of the study, and mention that even for a simple linear growth model, the 

average linear trend depends on when the study started (assuming change over time is not 

perfectly linear for every individual in the study). The other aspect of the location of time 

points is the relative location of the time points to one another. Cole and Maxwell (2009) 

show that relationships between variables vary as a function of the interval between 

assessments, which can lead to misleading conclusions when the specific interval is left 

ignored. For this reason, researchers should choose the location of time points so as to 

test the hypotheses that are of interest; when they fail to do so, they can face the 

possibility of hypothesizing an effect that corresponds to a specific time point, but testing 

the effect at a different time point. Selig, Preacher, and Little (2012) and Tan et al. (2012) 

have developed techniques to not only account for, but to model the time-varying 

relationships between variables. 

Time and Other Factors in Growth Curve Modeling 

In this section, I discuss how the temporal design influences the outcome of a 

growth curve analysis. In doing so, I also mention other factors which affect estimation of 

growth curve models. 

Some simulation studies have investigated how the number of time points, along 

with other factors such as sample size and effect size, impact the results of a growth 

curve analysis. Hertzog, Lindenberger, Ghisletta, and van Oertzen (2006) were interested 

in the power to detect the correlation between two slopes in a multivariate growth curve. 
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They varied number of time points, along with sample size, effect size (magnitude of the 

correlation of interest), and growth curve reliability (i.e., how little residual variance was 

left unaccounted for at each time point). As expected, power to detect the covariance 

between slopes increased as number of time points, effect size, and sample size increased. 

However, power was generally low unless the model fit the data particularly well (high 

growth curve reliability). 

In a follow-up study, Hertzog, van Oertzen, Ghiselli, and Lindenberger (2008) 

were interested in the power to detect the variance of a linear slope in a linear growth 

curve. They again varied number of time points, sample size, effect size, and growth 

curve reliability, and found similar results. In particular, growth curve reliability had a 

high impact on power, such that poor model fit was associated with low power to detect a 

nonzero slope variance. Power was again found to monotonically increase as number of 

time points, sample size, and effect size increased. In a related study investigating power 

to detect a slope variance in a multi-indicator latent growth curve (i.e., a growth curve 

which controls for measurement error), von Oertzen, Hetzog, Lindenberger and Ghisletta 

(2010) showed both analytically and through simulations that increasing the number of 

time points is most effective at increasing power when model misfit is not due to 

measurement error (see also Willett, 1989). These authors provide formulas to help 

determine the optimal number of time points and number of indicators per time point 

when model misfit is a combination of both measurement and non-measurement error. 

All of the studies mentioned above, which looked at the power to detect nonzero 

slope variances or covariances as a function of number of time points, also manipulated 

the sample size. In each case, smaller sample sizes yielded lower power to detect nonzero 
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effects. Likewise, small sample sizes have the drawback of making some of the 

parameter estimates biased. Maas and Hox (2005) showed in a simulation study that 

small level-2 samples (less than 50) in multilevel modeling lead to negatively biased 

level-2 standard errors. In the case of growth curves, this corresponds to a situation where 

few individuals are sampled. Similarly, variance components are underestimated in small 

samples. This is because the maximum likelihood estimate of the variance of normal 

distributions is negatively biased, and no adjustment is made in growth curve modeling 

(Enders, 2010). All in all, small sample sizes can not only yield low power, but also 

affect the accuracy of certain variance estimates. 

With regards to the relative location of time points, some relevant information 

stems from simulation studies using planned missing data designs. In planned missing 

data designs, the researcher does not administer all the measures to all the participants. In 

the case of longitudinal designs, this means that some participants are missing one or 

more assessments by design. Simulation studies have shown that “not all time points are 

created equal.” Graham, Taylor and Cumcille (2001) found that designs in which the 

missing data were concentrated in the middle time points, allowing for the use of the full 

sample at the extreme time points, yielded greater power to detect a binary predictor of 

the linear slope in a linear growth model than when the extreme time points had missing 

data. Mistler and Enders (2012) replicated these results looking at power to detect either 

linear or quadratic change over time for different planned missing data designs. 

Specifically, increasing the variance of the time points by imposing missing data on the 

middle time points and leaving the extreme time points intact decreased standard errors, 

which resulted in higher power. Willett (1989) derived analytically the same conclusions 
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for complete-cases designs. Specifically, he showed that a researcher can increase growth 

curve reliability by either increasing the number of time points, increasing the variance of 

the time points (sampling time points as far away as possible from the mean time point), 

or both. 

Treating Time-Unstructured Data as Time-Structured 

Some studies have evaluated the consequences of incorrectly analyzing 

longitudinal data (e.g., by misspecifying the level-1 error structure; Kwok, West, & 

Green, 2007; Vallejo, Ato, & Valdés, 2008; Wu & West, 2010), but few studies have 

investigated the impact of treating time-unstructured data as time-structured, which is the 

focus of the current study. Singer and Willett (2003, Ch. 5) present the results of a study 

analyzed in one of two ways: 1) using the participants’ actual age at the time of 

assessment; 2) using the participants’ expected age at each assessment (the authors had 

planned to assess the participants when they were around 6.5, 8.5, and 10.5 years old, so 

they used these age values for every participant). In the second analysis, they found that, 

relative to when the data were analyzed correctly, the linear slope was overestimated, as 

were the variances of the intercept and linear slope. Mehta and West (2000) presented a 

similar scenario, where they ignored individual variability in age at the start of the study 

(they used wave instead of age as a way to track time; see also Hertzog & Nesselroade, 

2003). They found that the estimate of the intercept variance was overestimated relative 

to the known population value, and that the negative covariance between intercept and 

linear slope was closer to zero. 

Both of these studies analyzed only one dataset each; none of the characteristics 

of the dataset (e.g., sample size) were systematically varied through simulations. Also, 



www.manaraa.com

 12 

one of the studies (Singer & Willett, 2003) did not make use of population values, 

making it impossible to determine just how badly the incorrect analysis performed. 

Moreover, the analysis reported by that study used incorrect wave values, given that the 

expected age at each time point did not correspond to the mean age. These studies have 

not looked at a situation where there is no error introduced in the mean time values at 

each wave, but where individual differences in time values are merely ignored instead. 

The current study aims to overcome these shortcomings. 

Current Study 

The goal of the current study is to use Monte Carlo simulation to investigate the 

impact of ignoring individual differences in times of assessment in growth curve models. 

In other words, this study seeks to establish the consequences of analyzing time-

unstructured data as if it were time-structured. I refer to this simplification as a model 

misspecification hereafter. 

Specifically, I look at the ability of linear growth curve models to recover 

population parameter values when either medium or large amounts of individual 

differences in time points are ignored. To do so, I add a random deviation to each time 

value for each person, but analyze the data as if these deviations were not present. I 

define a “medium” deviation as any deviation between -0.2 and 0.2 (up to 20% of one 

unit on the time scale), and a “large” deviation as any deviation between -0.5 and 0.5 (up 

to 50% of one unit on the time scale). In the simulation, I also vary sample size and 

number of time points which, as discussed above, have been shown to affect the accuracy 

of results and power to detect significant effects. I generate datasets in which there is 

either no or some linear change over time, and investigate how these factors affect Type I 
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error rate and power for the linear slope, respectively. I also look at how the manipulated 

factors affect parameter bias for all parameters, and the likelihood of achieving a 

converged, admissible solution. 

My hypotheses are as follows. Obtaining a converged, admissible solution should 

be less likely when ignoring individual differences in time points. When solutions do 

converge, there should be no bias in the mean intercept and linear slope, since the 

loadings used when ignoring individual differences in time points correspond to the 

expected mean time points. However, given the model misspecification caused by 

ignoring individual differences in time points, the standard error of the linear slope 

should be larger, which in turn should lead to less power to detect linear change over time 

when it is nonzero, and a lower Type I error rate when it is zero. Similarly, the 

misspecification should lead the intercept and slope variances to be overestimated; given 

the compensatory relationship between residual and growth factor variances (see Kwok et 

al., 2007), this could also lead the residual variance to be underestimated. These problems 

should be more salient when large amounts of individual differences in time points are 

ignored compared to medium amounts. Similarly, obtaining a converged solution, 

achieving adequate power to detect a nonzero linear slope, and estimating the intercept 

and slope variances without bias should be more often achieved as sample size and 

number of time points increase.  
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Chapter 2 

Method 

Simulation Design 

Table 1 shows the factors that were varied during the simulation. There are 2 

magnitudes of individual differences in time points that are ignored (up to either 20% or 

50% of one time unit per individual for each time point), 4 sample sizes (from 30 to 500), 

4 numbers of time points (from 3 to 9), and 2 linear slopes (0 or 2), yielding 64 different 

conditions (2x4x4x2). Figure 1 shows the population model for the condition with a large 

(50%) misspecification, 3 time points, and nonzero linear slope.  

 

Factor Values 

Extent of misspecification 20%, 50% 

Sample size 30, 50, 200, 500 

Number of time points 3, 5, 7, 9 

Linear slope 0, 2 

 

Table 1. Values taken by the manipulated factors during the simulation. 
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Figure 1. Path diagram for population model in simulation condition with large 

individual differences in time points, nonzero linear slope, and three time points. 

 

Population values for the mean intercept and nonzero linear slope, intercept and 

slope variances, intercept and slope covariance, and residual variance were chosen to be 

representative of published research. Values at time 0 are   scores (see also Hertzog et 

al., 2006, 2008; von Oertzen et al., 2010).   scores are a linear transformation of   scores: 

        . Therefore, the population mean intercept is 50, and intercept variance is 

100. The mean nonzero slope is 2, corresponding to a change of one fifth of a standard 

deviation from one assessment to the next. The slope variance was chosen so as to be 

smaller than the intercept variance and was set to 16, meaning that the intercept variance 

is 6.25 times larger than the slope variance. Given the mean slope and slope variance, we 
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can compute a standardized effect size ( ) for the linear slope (Raudenbush & Liu, 2001) 

that is interpreted like a Cohen’s d: 

  
  

√   

 
 

√  
     

which corresponds to a medium effect size. The covariance between the intercept and 

slope was set to 12, which corresponds to an intercept-slope correlation of +0.30. Finally, 

the residual variance was set to 100, implying a low growth curve reliability of 50% at 

time 0. 

Ten thousand datasets were generated in each condition, and analyzed either 

while ignoring individual differences in times of assessments (slope loadings in Figure 

1), or while using the correct times of assessments for each individual. 

Outcomes 

In each condition of the simulation, I look at the following outcomes.  

Convergence rate and proportion of inadmissible solutions. The convergence rate 

is the proportion of datasets that yield a converging solution. I also report the proportion 

of datasets that yield inadmissible solutions in the form of negative variances and out-of-

bounds correlations (see Analysis of Datasets). 

Parameter bias.  Parameter bias is computed as 

  
 ̅̂   

 
 

where  ̅̂ is the average parameter estimate across replications, and   is the population 

value for that parameter. Parameter bias was computed for all estimated parameters, 

namely, mean intercept and linear slope, intercept and slope variances, intercept and 

slope covariance, and residual variance. 
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Power. Power to detect linear change over time (for conditions where the linear 

slope is nonzero) was computed as the proportion of replications in each condition where 

the Wald z test of the slope factor is significant at an alpha level of .05. 

Type I error rate. Type I error rate for the slope factor (for conditions where the 

linear slope is zero) was computed as the proportion of replications in each condition 

where the Wald z test of the slope factor is significant at an alpha level of .05. 

Data Generation  

Ten thousand datasets were generated for each condition of the simulation design 

(Table 1). Datasets were sampled from these populations using R v3.0.2 (R Core Team, 

2013), according to Equation 5. For example, the population model shown in Figure 1 

uses the following matrices for each person: 

   [
 
 
 
] 

    [

              
              
              

] 

  [
  
 
] 

   [

        
        
        

] 

           , where   [
     
    

] 

The terms U(-0.5, 0.5) represent a value sampled from a theoretical uniform 

distribution with a minimum of -0.5 and a maximum of 0.5. The terms N(0, 100) 

represent a value sampled from a theoretical normal distribution of mean 0 and variance 
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100. The dimensions of the   ,   ,    , and    matrices (see Equation 5) vary according 

to the number of time points per individual. To allow for each person to have their own 

time values (i.e., for    in Equation 5 to vary across persons), data were generated for 

one person at a time (hence the added i subscript in    ). 

Analysis of Datasets 

Each dataset was analyzed in two ways: 1) by constraining the factor loadings to 

be equal across individuals (e.g., set the slope loadings to 0, 1, and 2 in the 3-wave 

condition, which are the expected mean loadings at each wave); and 2) by allowing each 

person to have his or her own factor loadings. Analyses were done using Mplus v.7.0 

(Muthén & Muthén, 2012). To achieve the second analysis, the individually-varying 

times of observations method described in Mehta and West (2000) as implemented in 

Mplus was used. In all cases, the residual variances at each time point were constrained 

to equality. 

Mplus does not distinguish between admissible and inadmissible solutions, so 

long as the estimation converges to a solution. The R package MplusAutomation 

(Hallquist & Wiley, 2013) was used to loop through each analysis, and flag datasets that 

yielded inadmissible solutions in the form of negative variances or out-of-bounds 

correlation between the intercept and slope factors for each simulation condition. 

Moreover, Mplus does not automatically provide the correlation between intercept and 

slope when using individually-varying times of observations. Therefore, for each 

analysis, the correlation was computed as (see Singer & Willett, 2003, p. 100): 

 ̂  
 ̂  

√ ̂   ̂  
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Only the datasets that yielded admissible solutions were used in pooling the results within 

each condition of the simulation. 

 Listings of the computer code used to generate and analyze the data are presented 

in the Appendix. 
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Chapter 3 

Results 

Convergence Rate and Proportion of Admissible Solutions 

 Figure 2 shows the proportion of converged solutions (row 1), proportion of 

admissible solutions (row 2), and proportion of usable solutions (solutions that are both 

converged and admissible; row 3), as a function of number of time points (x axis), extent 

of misspecification (points), type of analysis (lines), and sample sizes (panels), when the 

mean slope is nonzero. The first row of Figure 2 shows that the time-structured analysis 

virtually always converged to a solution, for all time points, misspecifications, and 

sample sizes. The time-unstructured analysis almost always converged to a solution, with 

a few exceptions when there were only 3 time points and sample size was 30 or 50, where 

the convergence rate was 96% in both cases. 
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Figure 2. Proportion of analyses that yielded a converged, admissible, and usable solution as a function of number of time points (x 

axis), type of analysis (solid line = time structured, dotted line = time unstructured), magnitude of individual differences in time points 

(+ = 20%,  = 50%), and sample size (columns), when slope is nonzero. 
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The second row of Figure 2 shows that the time-unstructured analysis virtually always 

converged to an admissible solution. Conversely, the time-structured analysis sometimes 

yielded inadmissible solutions, and this was a function of number of time points and 

sample size: The time-structured analysis was more likely to yield an inadmissible 

solution for 3 or 5 time points, and for samples of 30 or 50 observations. The likelihood 

of obtaining an inadmissible solution in a time-structured analysis was unrelated to 

whether misspecification was medium or large (the two solid lines overlap in Figure 2). 

 The third row of Figure 2 shows the combination of these results, i.e. a solution is 

usable if it both converged and was admissible. Overall, if a researcher were to collect 

one sample from this population, he or she could proceed with the time-unstructured 

analysis almost 100% of the time, regardless of number of time points, sample size, and 

magnitude of individual differences in times of assessment. On the other hand, the 

researcher could proceed with the time-structured analysis only some of the time, 

depending on number of time points and sample size. Comparing rows 1 and 2 from 

Figure 2 shows that this difficulty is due to the time-structured analysis yielding 

inadmissible solutions in the form of negative variances and out-of-bounds correlations. 

Parameter Bias 

 Growth factor means. Figure 3 is analogous to Figure 2, and shows parameter 

bias (in percent) for the mean intercept (row 1) and mean slope (row 2) as a function of 

number of time points, extent of misspecification, type of analysis, and sample size. 

Figure 3, row 1 shows that the mean intercept is generally estimated without bias, 

regardless of any of the manipulated factors. Row 2, on the other hand, shows a more 

ambiguous pattern. Mean slope tends to be slightly underestimated for 3 time points and 
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samples of 30 or 50 observations. Bias in mean slope does not seem to vary 

systematically as a function of either type of analysis or magnitude of individual 

differences in times of assessment.
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Figure 3. Mean intercept and mean slope bias (in %) as a function of number of time points (x axis), type of analysis (solid line = time 

structured, dotted line = time unstructured), magnitude of individual differences in time points (+ = 20%,  = 50%), and sample size 

(columns), when slope is nonzero.
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 Growth factor variances and covariance. Figure 4 shows parameter bias (in 

percent) for intercept variance (row 1), slope variance (row 2), and intercept-slope 

covariance (row 3). Intercept variance is overestimated when there are only 3 time points 

and 30 or 50 observations, but much more so when using a time-structured analysis than 

when using a time-unstructured analysis, regardless of the magnitude of individual 

differences in times of assessment that are ignored. With 5 time points and 30 

observations, the time-structured analysis yields an unbiased estimate of intercept 

variance, whereas the time-unstructured analysis underestimates the intercept variance. 

With 30 observations and 7 or 9 time points, or with 50 observations and 5, 7, or 9 time 

points, intercept variance is slightly underestimated regardless of type of analysis or 

magnitude of individual differences in time points. For larger sample sizes, intercept 

variance is estimated without bias regardless of number of time points, type of analysis, 

or magnitude of individual differences in time points, except with 3 time points and 200 

observations, where the time-structured analysis slightly overestimates intercept variance. 
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Figure 4. Intercept and slope variances and covariance bias (in %) as a function of number of time points (x axis), type of analysis 

(solid line = time structured, dotted line = time unstructured), magnitude of individual differences in time points (+ = 20%,  = 50%), 

and sample size (columns), when slope is nonzero. 
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Figure 4, row 2 shows a very similar pattern for bias of slope variance, with one 

important difference: Slope variance is more extremely overestimated, sometimes by 

over 60% (see y axis). As was the case for intercept variance, slope variance is 

overestimated with 3 time points and 30 or 50 observations, and much more so when 

using a time-structured analysis rather than a time-unstructured analysis. As before, it did 

not matter whether the magnitude of individual differences in time points was medium or 

large. Finally, as was the case for intercept variance, slope variance is overestimated with 

3 time points and 200 observations, but only with a time-structured analysis, and not with 

a time-unstructured analysis. 

 Figure 4, row 3 shows parameter bias for the intercept-slope covariance. In terms 

of bias, the intercept-slope covariance is the parameter that suffers the most from a small 

number of time points and small sample sizes (see y axis). Whereas both intercept and 

slope variance were overestimated with few time points and small sample sizes, 

intercept-slope covariance is underestimated with 3 points and 30 or 50 observations, 

particularly so when using a time-structured analysis instead of a time-unstructured 

analysis. Intercept-slope covariance is also underestimated with 5 time points and 30 

observations, and with 3 time points and 200 observations, but only with a time-

structured analysis, and not with a time-unstructured analysis. As was the case for both 

intercept and slope variance, there is no bias with a sample size of 500, regardless of 

number of time points, type of analysis, or magnitude of individual differences in times 

of assessment. 

 Residual variance. Figure 5 shows parameter bias for residual variance as a 

function of the manipulated factors. Residual variance is underestimated with 3 time 
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points and 30 or 50 observations, particularly so when using a time-structured analysis 

instead of a time-unstructured analysis. With 5, 7, or 9 time points, bias for residual 

variance is close to 0%, except in one situation: When large individual differences in 

times of assessments are ignored, a time-structured analysis tends to slightly overestimate 

residual variance, regardless of sample size (even with 500 observations). 
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Figure 5. Residual variance bias (in %) as a function of number of time points (x axis), type of analysis (solid line = time structured, 

dotted line = time unstructured), magnitude of individual differences in time points (+ = 20%,  = 50%), and sample size (columns), 

when slope is nonzero. 
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Power and Type I Error Rate 

 Figure 6 shows power (row 1) and Type I error rate (row 2) for the mean linear 

slope as a function of the manipulated factors. Power to detect the mean linear slope 

increases as a function of number of time points and sample size, but is unaffected by 

type of analysis or magnitude of individual differences in times of assessment. Power 

never reaches .80 with a sample size of 30, whereas power reaches .80 with a sample size 

of 50 when there are 5 or more time points. Power is well above .80 when there are 200 

or 500 observations, regardless of number of time points. 
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Figure 6. Power and Type I error rate as a function of number of time points (x axis), type of analysis (solid line = time structured, 

dotted line = time unstructured), magnitude of individual differences in time points (+ = 20%,  = 50%), and sample size (columns), 

when slope is nonzero (first row) or zero (second row). 
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 Figure 6, row 2 shows that Type I error rate (when mean slope is 0) is slightly 

above the nominal value of .05 when sample size is small (30 or 50), especially when 

there are more than 3 time points per subject. On the other hand, Type I error rate is 

around the nominal value of .05 when sample size is larger (200 or 500), regardless of 

number of time points, sample size, type of analysis, or magnitude of individual 

differences in times of assessment.   
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Chapter 4 

Discussion 

 The goal of this study was to investigate the effects of ignoring individual 

differences in times of assessment when modeling change over time. Specifically, I 

looked at how treating a time-unstructured dataset as though it were time-structured in 

growth curve modeling affects parameter estimates, convergence and admissibility of 

solution, and power and Type I error rate for the linear slope. 

 I hypothesized that obtaining a converged and admissible solution, with no 

negative variances and out-of-bound correlations, would be more difficult to achieve 

when ignoring individual differences in times of assessment (time-structured analysis) 

than when accounting for these differences (time-unstructured analysis). The hypothesis 

was partially supported. Solutions almost always converged when using a time-

unstructured analysis, and solutions always converged when using a time-structured 

analysis. However, the time-structured analysis frequently yielded inadmissible solutions; 

this was not the case for the time-unstructured analysis, which virtually always converged 

on an admissible solution. As expected, the time-structured analysis was more likely to 

yield an inadmissible solution when there were few time points and when sample size 

was small. Contrary to expectations, the proportion of inadmissible solutions in the time-

structured analysis was not affected by the magnitude of the individual differences in 

time points that were ignored. Overall, removing the information relative to the times of 

assessment of each subject led to difficulties in estimation, even when the loss of 

information was not extremely large. 
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 Regarding parameter bias, I hypothesized that mean intercept and slope would be 

estimated without bias in the time-structured analysis. Mean intercept was estimated 

without bias regardless of type of analysis, magnitude of individual differences in time 

points, sample size, or number of time points. Mean slope was generally estimated 

without bias, though it appeared to be slightly underestimated with few time points and 

small sample sizes, although any bias was unrelated to type of analysis and magnitude of 

individual differences in time points. Singer and Willett (2003) found that the mean slope 

in their study, with a sample size of 89, was larger when using a time-structured analysis 

instead of a time-unstructured analysis. This might be due to the fact that the time values 

used in their time-structured analysis did not correspond to the mean time value at each 

time point, whereas they did in the current study. Conversely, Mehta and West (2000) 

used the correct mean time values at each time point, as was done here, and similarly 

found that their estimate of the mean linear slope was unbiased. 

 I further hypothesized that both intercept and slope variance would be 

overestimated in a time-structured analysis. As expected, both variances were 

overestimated when there were few time points and sample size was small, more so when 

using the time-structured analysis. Therefore, it appears that random error due to the 

misspecification in the time-structured analysis is confounded with intercept and slope 

variance. However, it again did not matter whether the magnitude of the individual 

differences that were being ignored was medium or large; compared to the size of the 

individual differences in time points in the data, the type of analysis used was more 

predictive of bias in the estimate of the intercept and slope variances. One unexpected 

result was the slight negative bias in the intercept and slope variances in small samples 
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when there were more than 3 time points per subject, which occurred in both the time-

structured and time-unstructured analyses. Neither Singer and Willett (2003) nor Mehta 

and West (2000) report such a negative bias in intercept and slope variance. However, the 

sample sizes in those studies were 89 and 250 (respectively), well above the samples 

sizes of 30 and 50 at which intercept and slope variances were underestimated in this 

study. Some studies mentioned previously (Hertzog et al., 2008; von Oertzen et al., 2010) 

focused specifically on slope variance, but looked at power only, not bias. Future 

research could focus on bias in slope—and intercept—variance, and how such bias varies 

with combinations of sample size and number of time points in the context of growth 

curve modeling. 

 In this study, I found that the intercept-slope covariance was also estimated with 

bias in small samples with few time points, though the bias was negative. This contrasts 

with the positive bias observed for the intercept and slope variances. Both the negative 

bias in the intercept-slope covariance and the positive bias in the intercept and slope 

variances would lead the analyst to believe that the intercept-slope correlation is closer to 

zero than it should be, on average. As was the case for the intercept and slope variances, 

the time-structured analysis worsened the bias of the intercept-slope covariance relative 

to the time-unstructured analysis, while the specific magnitude of individual differences 

in time points that were ignored did not affect bias. Mehta and West (2000) also found 

that the intercept-slope covariance in their study was closer to zero when using a time-

structured analysis compared to a time-unstructured analysis. However, they had a 

sample size of 250 (and 4 time points). With this sample size, the intercept-slope 

covariance showed no bias in this study (see Figure 4, row 3). Future research should 
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determine whether this is due to differences in one or several population values that were 

not manipulated in this study (such as growth curve reliability or intercept or slope 

variance). 

 In terms of residual variance, I hypothesized that there would be a compensatory 

relationship between the intercept and slope variances, on the one hand, and the residual 

variance, on the other hand, replicating previous research (see Kwok et al., 2007). As 

expected, where intercept and slope variances were overestimated for small samples with 

few time points, residual variance was underestimated (the compensatory relationship 

seemed to be limited to these specific conditions in this study, however). In those cases, 

residual variance was more extremely underestimated when using a time-structured 

analysis. The underestimated residual variance coupled with the overestimated intercept 

and slope variances can give the impression of better fit of the growth model to the data 

than would be warranted. This is especially true when using a time-structured analysis 

rather than a time-unstructured analysis, because the intercept and slope variances are 

more overestimated, and residual variance is more underestimated, at least when sample 

size is small and time points are few. Indeed, when sample size is small and time points 

are few, a researcher who would compute the ratio of reliable (intercept and slope) 

variance to residual variance would obtain, on average, a larger ratio with a time-

structured analysis than with a time-unstructured analysis. Whether this illusion of a 

better fit is reflected in fit indexes remains to be investigated in future research. 

Preliminary results indicate that fit indexes might be able to correctly reflect the model 

misspecification: Singer and Willett (2003) report the deviance, AIC, and BIC fit 

statistics for both their time-unstructured and time-structured analysis, and all three fit 
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statistics indicate better model fit when using the time-unstructured analysis. (Mehta and 

West [2000] found no bias in their estimate of residual variance, but they do not provide 

fit statistics that can be compared across analyses.) 

With more than 3 time points per subject, residual variance was more often than 

not estimated without bias, except when a time-structured analysis was used and there 

were large individual differences in times of assessment, in which case residual variance 

was overestimated. Surprisingly, this is the only time in this study where magnitude of 

individual differences in time points actually mattered. 

 Contrary to what was hypothesized, power and Type I error rate were both 

unaffected by type of analysis and, yet again, by magnitude of individual differences in 

time points. As expected, power to detect a nonzero linear slope increased as number of 

time points and sample size increased, as was previously found for power to detect linear 

slope variance (Hertzog et al., 2008) and correlation between two linear slopes (Hertzog 

et al., 2006). The Type I error rate for the linear slope was around .05 for larger samples 

(200 and 500), but was found to be unexpectedly higher than .05 for smaller samples (30 

and 50). This is likely due to the use of the Wald z test to establish significance of the 

linear slope, which is the test provided by Mplus. This test assumes that the sampling 

distribution of the mean linear slope is normal, but the sampling distribution is less likely 

to be normal for small samples. An alternative to the Wald z test is the likelihood ratio 

test, which does not make any assumption regarding the form of the sampling distribution 

(Enders, 2010; see also Raudenbush & Bryk, 2002). Hertzog et al. (2008) compared the 

Type I error rate for the slope variance when using the Wald z test and two different 

likelihood ratio tests, and found that the two likelihood ratio tests maintained the Type I 
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error rate at around .05, but that the Wald z test was more liberal, and yielded an average 

Type I error rate of .08 for a sample size of 100. Another option would be for the analyst 

to compare the Wald z statistic to a t distribution rather than a normal distribution. Most 

software packages such as SPSS, SAS, and the package nlme in R, provide a p value for 

the linear slope based on a t distribution instead of a normal distribution, but Mplus does 

not. Future studies should compare the Type I error rates for the mean linear slope when 

basing conclusions on a Wald z test, a t test, or a likelihood ratio test. 

 Regardless of the type of analysis, the use of small samples and few time points 

was associated with bias in most parameter estimates and low power to detect the 

nonzero linear slope. Many researchers are cognizant of the pitfalls of small samples, but 

perhaps fewer are aware of the difficulties associated with few time points. One 

recommendation for researchers designing a longitudinal study would be to move beyond 

the typical pre-post design with small samples, and to aim to increase not only the sample 

size, but also the number of assessments per participant. 

Limitations and Future Research 

 This study was limited by a number of factors. As must be the case in simulation 

studies, some population values were fixed and not varied during the simulation. These 

population values were chosen to be representative of values found in published research. 

For example, the slope variance was set to be smaller than the intercept variance, and 

growth curve reliability was low (50%) at the first time point. However, it is possible that 

the results presented here are not generalizable to other population values (or 

combination of population values). More simulation studies using different population 

values are needed. 
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Another factor might limit the generalization of the results, perhaps more so than 

the choice of particular population values. In this study, deviations around the real time 

points were assumed to be independent from one time point to the next. However, this is 

unlikely to always be the case in longitudinal research. As the study progresses, 

deviations around the true time values tend to get larger, a phenomenon dubbed 

“occasion creep” (Singer & Willett, 2003). Future simulation studies could compare the 

consequences of ignoring individual differences in time points when errors are 

nonadditive with a more realistic situation where errors are additive.  

 In this study, I used full-information maximum likelihood to obtain parameter 

estimates. Both previous studies that have investigated the effects of ignoring individual 

differences in times of assessment in growth curve modeling (Mehta & West, 2000; 

Singer & Willett, 2003) also used full-information maximum likelihood. However, 

another estimation method, restricted maximum likelihood estimation, is often used in 

practice, and is indeed the default estimation method in many software packages, like 

SAS and nlme and lme4 in R. The two methods are asymptotically equivalent, but can 

sometimes yield different results, particularly in small samples (Hox, 2010). It remains to 

be seen how the results presented here change when a different estimation method is 

used. 

 It is noteworthy that the magnitude of individual differences in time points that 

were being ignored had very little impact on the outcomes of interest in this study, except 

for residual variance bias. This lack of effect is potentially due to the low growth curve 

reliability (i.e. the relatively high proportion of residual variance) used in this study, a 

factor that has been manipulated in other simulation studies on growth curve modeling 
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(Hertzog et al., 2006, 2008; von Oertzen et al., 2010). Since there was already much 

residual variance relative to reliable (intercept and slope) variance, the addition of more 

error created by the miscoding of time did not add much misfit to the data, regardless of 

whether the miscoding was medium or large. I suspect that when the model fits the data 

better, the deleterious effects of the miscoding of time would be increased, because the 

added misfit to the data would be larger relative to the already existing misfit.  

In the same vein, the effects of the miscoding of time might have been more 

salient in the presence of missing data. In this study, all samples were free of missing 

data, though previous simulation studies on growth curve modeling have successfully 

manipulated missing data (e.g., Mistler & Enders, 2012; Rhemtulla et al., 2013). Modern 

missing-data handling techniques yield unbiased estimates only when variables related to 

the missingness are included in the model (see Enders, 2010). One variable that is related 

to the missingness in longitudinal studies is often time itself: More participants are lost to 

the study as the study goes on. In growth curve modeling, the time variable is indeed 

included in the model; however, if the analyst uses a time-structured analysis instead of a 

time-unstructured analysis, then the time variable does not take the correct values, 

particularly if individual differences in assessment times are large. Therefore, I suspect 

that missing data would worsen the effects of ignoring individual differences in time 

points.   

 In conclusion, the current study is, to the best of my knowledge, the first study to 

systematically investigate the consequences of ignoring individual differences in times of 

assessment on solutions obtained when conducting growth curve modeling. Further, I 

provided several ways to improve on the study in future research. All in all, the current 



www.manaraa.com

 41 

 

study shows that it is advisable to use the correct time values where possible, even if the 

analyst believes that the deviations around time points are not too large. Singer and 

Willett (2003, p. 146) phrase the advice thus: “The bottom line: never ‘force’ an 

unstructured dataset to be structured.”    
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APPENDIX 

Code Used to Generate and Analyze the Data 

####################################################### 

################### DATA GENERATION ################### 

library(MASS) 

 

#number of timepoints 

Ts <- c(3,5,7,9) 

 

#factor means 

alpha1 <- 50 

alpha2 <- c(2, 0) 

 

#factor covariance matrix (psi) 

psi<-matrix(c(100, 12, 12, 16), 2, 2) 

 

#level-1 residual variance 

eps <- 100 

 

 

d <- list() #store generated datasets 

N <- c(30, 50, 200, 500) #sample sizes 

misspecification <- c(0.2, 0.5) 

nrep <- 1000 #number of datasets per condition 

 

for (t in Ts) 

{ 

 .colnames <- c(paste("y", 1:t, sep=""), paste("t", 1:t, sep="")) 

 

 #factor loadings (lambda) 

 lambda<-matrix(NA, t, 2) 

 lambda[,1] <- 1 

 

 for (s in alpha2) 

 { 

  for (n in N) 

  { 

    

   for (mis in misspecification) 

   { 

    print(c(mis,n,s,t)) #start of this condition 

     

    for (r in 1:nrep) 

    { 

     #level-2 residuals: zeta (sample from bivariate 

normal) 

     zeta <- mvrnorm(n, mu=c(0,0), Sigma=psi) #equation 7 

  

     #level-1 residuals vector (epsilon) 

     epsilon <- matrix(rnorm(t*n,0,sqrt(eps)), t, n, 

byrow=F) #equation 7 

  

     #factor loadings slope (time points) 

     timepts <- matrix(runif(t*n,-1*mis,mis), t, n, 

byrow=F) 

 

     .d<-matrix(NA,0,t*2) #(empty) vector of scores for 

one person 

  

     #each person in sample for repetition r 

     for (i in 1:n) 

     { 

      y <- vector() 

      #factor loadings 

      lambda[,2] <- 0:(t-1) + timepts[,i] 

   

      #eta 
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      eta <- c(alpha1, s) + zeta[i,] #equation 6 

    

      #compute vector of scores for observation 

      y <- lambda%*%eta + epsilon[,i] #equation 5 

      .d <- rbind(.d, c(as.vector(y), lambda[,2]) 

) 

     } 

  

     .d <- as.data.frame(.d) #n rows, Ts columns 

     colnames(.d) <- .colnames 

 

     ######export data for Mplus 

     .file <- 

paste("c:/.../datasets/t",t,"s",s,"n",n,"mis",mis,"_",r,".dat", sep="") 

     prepareMplusData(.d, .file, overwrite=T) 

     ###### 

 

     d[[length(d)+1]] <- .d #stores rth dataset in list 

of datasets 

    } 

   } 

  } 

 } 

} 

 

####################################################### 

 

 

 

####################################################### 

############# MPLUS: CREATE INPUT FILES, ############## 

#############    RUN, AND LOAD OUTPUTS   ############## 

 

library(MplusAutomation) 

 

#create Mplus input files from template 

createModels("c:/.../MplusTemplate3.txt") 

 

#run models through Mplus 

runModels(directory="c:/.../inputs", recursive=T) 

 

#get Mplus outputs into R 

outputs <- readModels("c:/.../inputs", recursive=T) 

 

#save outputs 

save(outputs, file="c:/.../outputs.RData") 

 

#load outputs 

outputs <- get(load(file="c:/.../outputs.RData")) 

 

####################################################### 

 

 

 

##################################################################### 

############# CREATE TABLE WITH ONE LINE PER OUTPUT    ############## 

############# WITH PARAM. ESTIMATES AND OTHER OUTCOMES ############## 

 

 

#####nonconverged 

nonconverged <- vector(length=length(outputs)); nonconverged[] <- FALSE 

for (i in 1:length(outputs)) 

{ 

 if (is.null(outputs[[i]]$summaries$LL)) nonconverged[i] <- TRUE 

} 

 

 

#####inadmissible (AFTER nonconverged) 

inadmissible <- vector(length=length(outputs)); inadmissible[] <- FALSE 

for (i in 1:(length(outputs))) 

{ 
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 .vars <- subset(outputs[[i]]$parameters$unstandardized, 

subset=paramHeader%in%c("Variances", "Residual.Variances"), select="est") 

 .cor <- subset(outputs[[i]]$parameters$unstandardized, 

subset=paramHeader=="S.WITH", select="est")/(.vars[1,]*.vars[2,])^0.5 

 if (nonconverged[i] == FALSE & (.vars[1,]<0 | .vars[2,]<0 | .vars[3,]<0 | .cor[1,] 

> 1 | .cor[1,] < -1) ) inadmissible[i] <- TRUE 

} 

 

inadmissible[which(nonconverged)] <- NA 

 

##### 

 

 

 

 

###########create table with: output #; t; n; slope; mis; converged; admissible; usable 

 

#get condition 

cond.ana = cond.t = cond.n = cond.mis = cond.s <- vector() 

for (i in 1:length(outputs)) 

{ 

 .title <- outputs[[i]]$input$title #e.g.: "TUNt9s0n500mis0.5 " 

  

 #ana 

 if (grepl("TSt", .title)) cond.ana[i] <- "TS" else if (grepl("TUNt", .title)) 

cond.ana[i] <- "TUN" 

 

 #t 

 if (grepl("t3", .title)) cond.t[i] <- 3 else if (grepl("t5", .title)) cond.t[i] <- 

5 else if (grepl("t7", .title)) cond.t[i] <- 7 else if (grepl("t9", .title)) cond.t[i] <- 

9 

 

 #n 

 if (grepl("n30mis", .title)) cond.n[i] <- 30 else if (grepl("n50mis", .title)) 

cond.n[i] <- 50 else if (grepl("n200mis", .title)) cond.n[i] <- 200 else if 

(grepl("n500mis", .title)) cond.n[i] <- 500 

 

 #mis 

 if (grepl("mis0.2", .title)) cond.mis[i] <- 0.2 else if (grepl("mis0.5", .title)) 

cond.mis[i] <- 0.5 

 

 #s 

 if (grepl("s0n", .title)) cond.s[i] <- 0 else if (grepl("s2n", .title)) cond.s[i] 

<- 2 

} 

 

cond <- paste(cond.ana, "t", cond.t, "n", cond.n, "mis", cond.mis, "s", cond.s, sep="") 

 

#create table 

outputs.info <- data.frame(number=1:length(outputs), ana=cond.ana, t=cond.t, n=cond.n, 

mis=cond.mis, s=cond.s, cond=cond, converged=!nonconverged, admissible=!inadmissible) 

outputs.info$usable <- outputs.info$converged & outputs.info$admissible 

 

#get estimated parameter values for each converged & admissible solution 

SwithI=meanI=meanS=varI=varS=resid=pSlope <- rep(NA, length(outputs)) 

for (i in which(outputs.info$usable==TRUE)) 

{ 

 .ests <- subset(outputs[[i]]$parameters$unstandardized, 

subset=paramHeader%in%c("Means","S.WITH","Variances","Residual.Variances")) 

 .ests <- .ests[order(.ests$param, .ests$paramHeader),] 

 meanI[i] <- .ests[1,"est"] 

 SwithI[i] <- .ests[2,"est"] 

 varI[i] <- .ests[3,"est"] 

 meanS[i] <- .ests[4,"est"] 

 varS[i] <- .ests[5,"est"] 

 resid[i] <- .ests[6,"est"] 

 pSlope[i] <- .ests[4,"pval"] 

 

} 

 

#update outputs table with parameter estimates from each output 
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outputs.info <- data.frame(outputs.info, meanI, meanS, varI, varS, SwithI, resid, pSlope) 

 

 

#save 

save(outputs.info, file="c:/.../outputs.info.RData") 

 

 

#load 

o <- get(load(file="c:/.../outputs.info.RData")) #500 

nrow(o) #1,280,000 

########### 

 

##################################################################### 

 

 

 

##################################################################### 

############# CREATE TABLE WITH ONE LINE PER CONDITION ############## 

#############  WITH PARAMETER BIAS AND OTHER OUTCOMES  ############## 

 

 

###compute parameter bias in each condition 

o.bias <- with(o, aggregate(cbind(meanI, meanS, varI, varS, SwithI, resid), by=list(ana, 

mis, t, n, s), FUN=function(x){mean(x,na.rm=T)}) ) 

names(o.bias)[1:5] <- c("ana", "mis", "t", "n", "s") 

 

o.bias$meanI <- (o.bias$meanI-50)/50*100 

o.bias$meanS[o.bias$s==2] <- (o.bias$meanS[o.bias$s==2] - 2)/2*100 

o.bias$meanS[o.bias$s==0] <- NA 

o.bias$varI <- (o.bias$varI -100)/100*100 

o.bias$varS <- (o.bias$varS -16)/16*100 

o.bias$SwithI <- (o.bias$SwithI -12)/12*100 

o.bias$resid <- (o.bias$resid -100)/100*100 

###end bias 

 

 

####compute other outcomes: prop. converged, admissibile, usable; power, Type I error 

o.other <- with(o, aggregate(cbind(converged, admissible, usable), by=list(ana, mis, t, 

n, s), FUN=function(x){ return(sum(x, na.rm=T) / sum(complete.cases(x))) })

 ) 

names(o.other)[1:5] <- c("ana", "mis", "t", "n", "s") 

 

#function to compute power 

get.power <- function(p, alpha=.05) 

{ 

 p <- p[complete.cases(p)] 

 return(sum(p<alpha)/length(p)) 

} 

 

#compute power or Type I error in each condition 

o.power <- with(o, aggregate(pSlope, by=list(ana, mis, t, n, s), FUN=get.power) ) 

names(o.power)[1:6] <- c("ana", "mis", "t", "n", "s", "power") 

 

#get a dataset with bias and power/Type I error for each condition combined 

o.all <- merge(x=o.bias, y=o.other, all.x=T, all.y=T, by=c("ana", "mis", "t", "n", "s")) 

o.all <- merge(x=o.all, y=o.power, all.x=T, all.y=T, by=c("ana", "mis", "t", "n", "s")) 

####end other outcomes 

 

##################################################################### 

 

 

 

####################################################### 

######################## PLOTS ######################## 

 

##outcome: row 

##sample size: column (4) 

##mis(2) and ana(2): lines (4) 

##t: x axis (4) 

##restrict to slope=2 

##one graph: x=t, y=bias, lines=ana*mis; slope=2, sample=one at a time 
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.params1 <- c("meanI", "meanS") #growth factor means 

.params2 <- c("varI", "varS", "SwithI") #growth factor variances & covariance 

.params3 <- c("resid") #residual variance 

.plots4 <- c("converged", "admissible", "usable") 

.plots5 <- c("power", "typeI") 

.listparams <- list(.params1, .params2, .params3, .plots4, .plots5) #5 different figures 

.ylim <- c(-100,100) #y axis (temporary) 

.margins <- c(1,0,1,0)+0.0 #margins 

 

 

for (.params in .listparams) 

{ 

 

 windows() #open new plot window 

 par(mfrow=c(length(.params),4), mar=.margins) #one row per outcome, 4 panels 

(columns) per row 

 

 for (param in .params) #one row at a time 

 { 

  .slope <- ifelse(param=="typeI", 0, 2) #if looking at Type I, use 

conditions where slope=0; otherwise, use conditions where slope=2 

  if (param=="typeI") param <- "power" 

  .d <- subset(o.all, s==.slope, select=c("t", param)) 

  .ylim <- c( floor( min(.d[,2:(length(param)+1)], na.rm=TRUE) ), 

ceiling( max(.d[,2:(length(param)+1)], na.rm=TRUE) ) ) #find lowest and 

highest value for this particular outcome (param) 

  .ylim <- c(max(abs(.ylim),5)*-1, max(abs(.ylim),5)) #set y-axis limits to 

± the largest value in abs. value 

  if (param %in% c("converged", "admissible", "usable", "power")) .ylim <- 

c(0,1) #set y-axis for proportions 

  if (param=="power" & .slope==0) .ylim <- c(0,0.1) #set y-axis for Type I 

error plot 

  

  for (ssize in c(30,50,200,500)) 

  { 

   #margins 

   if (ssize == 500) par(mar=.margins+c(0,0,0,0.05)) #increase 

right margin in rightmost panel 

   else par(mar=.margins) 

  

   plot(1, type="n", xlab=NA, ylab=NA, ylim=.ylim, xlim=c(3,9), 

xaxt="n") 

 

   #position of x axis 

   if (param %in% c("meanI", "meanS", "varI", "varS", "SwithI", 

"resid")) .xaxis.pos <- 0 else if (param=="power" & .slope==0) .xaxis.pos <- 0.05 else if 

(param=="power" & .slope==2) .xaxis.pos <- NA else .xaxis.pos <- NA 

   axis(1, at=c(3,5,7,9), labels=T, tick=T, pos=.xaxis.pos) #add x-

axis 

    

 

   for (a in c("TS", "TUN")) 

   { 

    for (m in c(0.2, 0.5)) 

    { 

     .d <- subset(o.all, s==.slope & n==ssize & ana==a & 

mis==m, select=c("t", param)) #get the 4 values for particular line to plot  

     print(paste(ssize, a, m, sep=",")) 

     print(.d) 

     lines(x=.d[,1], y=.d[,2], type="b", lty=nchar(a)-1, 

pch=m*10+1, col=switch(a, TS="red", TUN="black"), lwd=2, cex=2) #plot points and line, 

with different symbol and color depending on misspecification and type of analysis 

      

    } 

   } 

  } 

 } 

} 

 

####################################################### 
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Template used to generate Mplus input files (MplusTemplate3.txt) 
 

[[init]] 

iterators = ana t slope n mis r; 

ana = 1:2; 

anaName#ana = TS TUN; 

t = 3 5 7 9; 

slope = 2 0; 

n = 30 50 200 500; 

mis = 0.2 0.5; 

r = 1:1000; 

filename = "[[r]].inp"; 

outputDirectory = C:/.../inputs/[[anaName#ana]]/t[[t]]/s[[slope]]/n[[n]]/mis[[mis]]; 

[[/init]] 

 

TITLE: [[anaName#ana]]t[[t]]s[[slope]]n[[n]]mis[[mis]] 

 

DATA: FILE = "c:/.../datasets/t[[t]]s[[slope]]n[[n]]mis[[mis]]_[[r]].dat"; 

VARIABLE:  

NAMES = 

[[t==3]] 

y1-y3 t1-t3; 

[[/t==3]] 

[[t==5]] 

y1-y5 t1-t5; 

[[/t==5]] 

[[t==7]] 

y1-y7 t1-t7; 

[[/t==7]] 

[[t==9]] 

y1-y9 t1-t9; 

[[/t==9]] 

[[ana == 1]] 

USEVARIABLES =  

[[t==3]] 

y1-y3; 

[[/t==3]] 

[[t==5]] 

y1-y5; 

[[/t==5]] 

[[t==7]] 

y1-y7; 

[[/t==7]] 

[[t==9]] 

y1-y9; 

[[/t==9]] 

[[/ana == 1]] 

[[ana == 2]] 

TSCORES = 

[[t==3]] 

t1-t3; 

[[/t==3]] 

[[t==5]] 

t1-t5; 

[[/t==5]] 

[[t==7]] 

t1-t7; 

[[/t==7]] 

[[t==9]] 

t1-t9; 

[[/t==9]] 

[[/ana == 2]] 

 

ANALYSIS: 

[[ana==2]] 

TYPE = RANDOM; 

[[/ana==2]] 

ESTIMATOR = ML; 

 

MODEL: 
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[[ana == 1]] 

[[t==3]] 

i s | y1@0 y2@1 y3@2; 

[[/t==3]] 

[[t==5]] 

i s | y1@0 y2@1 y3@2 y4@3 y5@4; 

[[/t==5]] 

[[t==7]] 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6; 

[[/t==7]] 

[[t==9]] 

i s | y1@0 y2@1 y3@2 y4@3 y5@4 y6@5 y7@6 y8@7 y9@8; 

[[/t==9]] 

[[/ana == 1]] 

[[ana == 2]] 

[[t==3]] 

i s | y1-y3 AT t1-t3; 

[[/t==3]] 

[[t==5]] 

i s | y1-y5 AT t1-t5; 

[[/t==5]] 

[[t==7]] 

i s | y1-y7 AT t1-t7; 

[[/t==7]] 

[[t==9]] 

i s | y1-y9 AT t1-t9; 

[[/t==9]] 

[[/ana == 2]] 

 

[[t==3]] 

y1 y2 y3 (resid); 

[[/t==3]] 

[[t==5]] 

y1 y2 y3 y4 y5 (resid); 

[[/t==5]] 

[[t==7]] 

y1 y2 y3 y4 y5 y6 y7 (resid); 

[[/t==7]] 

[[t==9]] 

y1 y2 y3 y4 y5 y6 y7 y8 y9 (resid); 

[[/t==9]] 

 

OUTPUT: 

 

 

EXAMPLE OF MPLUS INPUT FILE FOR THE TIME-STRUCTURED ANALYSIS AND A 

DATASET WITH 5 TIME POINTS, SLOPE OF 2, SAMPLE SIZE OF 50, AND 

MISSPECIFICATION OF 0.5 

 

TITLE: TSt5s2n50mis0.5 

 

DATA: FILE = "c:/.../t5s2n50mis0.5_1.dat"; 

VARIABLE:  

NAMES = 

y1-y5 t1-t5; 

USEVARIABLES =  

y1-y5; 

 

ANALYSIS: 

ESTIMATOR = ML; 

 

MODEL: 

i s | y1@0 y2@1 y3@2 y4@3 y5@4; 
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y1 y2 y3 y4 y5 (resid); 

 

OUTPUT: 

 

 

 

EXAMPLE OF MPLUS INPUT FILE FOR THE TIME-UNSTRUCTURED ANALYSIS AND A 

DATASET WITH 5 TIME POINTS, SLOPE OF 2, SAMPLE SIZE OF 50, AND 

MISSPECIFICATION OF 0.5 

 

TITLE: TUNt5s2n50mis0.5 

 

DATA: FILE = "c:/.../t5s2n50mis0.5_1.dat"; 

VARIABLE:  

NAMES = 

y1-y5 t1-t5; 

TSCORES = 

t1-t5; 

 

ANALYSIS: 

TYPE = RANDOM; 

ESTIMATOR = ML; 

 

MODEL: 

i s | y1-y5 AT t1-t5; 

 

y1 y2 y3 y4 y5 (resid); 

 

OUTPUT: 
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